Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Chinese Journal of Biotechnology ; (12): 1232-1246, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970435

RESUMO

Scopoletin is a coumarin compound with various biological activities including detumescence and analgesic, insecticidal, antibacterial and acaricidal effects. However, interference with scopolin and other components often leads to difficulties in purification of scopoletin with low extraction rates from plant resource. In this paper, heterologous expression of the gene encoding β-glucosidase An-bgl3 derived from Aspergillus niger were carried out. The expression product was purified and characterized with further structure-activity relationship between it and β-glucosidase analyzed. Subsequently, its ability for transforming scopolin from plant extract was studied. The results showed that the specific activity of the purified β-glucosidase An-bgl3 was 15.22 IU/mg, the apparent molecular weight was about 120 kDa. The optimum reaction temperature and pH were 55 ℃ and 4.0, respectively. Moreover, 10 mmol/L metal ions Fe2+ and Mn2+ increased the enzyme activity by 1.74-fold and 1.20-fold, respectively. A 10 mmol/L solution containing Tween-20, Tween-80 and Triton X-100 all inhibited the enzyme activity by 30%. The enzyme showed affinity towards scopolin and tolerated 10% methanol and 10% ethanol solution, respectively. The enzyme specifically hydrolyzed scopolin into scopoletin from the extract of Erycibe obtusifolia Benth with a 47.8% increase of scopoletin. This demonstrated that the β-glucosidase An-bgl3 from A. niger shows specificity on scopolin with good activities, thus providing an alternative method for increasing the extraction efficiency of scopoletin from plant material.


Assuntos
Aspergillus niger/genética , beta-Glucosidase/química , Escopoletina , Polissorbatos , Cumarínicos
2.
Chinese Journal of Biotechnology ; (12): 4644-4657, 2022.
Artigo em Chinês | WPRIM | ID: wpr-970337

RESUMO

β-glucosidase has important applications in food, medicine, biomass conversion and other fields. Therefore, exploring β-glucosidase with strong stability and excellent properties is a research hotspot. In this study, a GH3 family β-glucosidase gene named Iubgl3 was successfully cloned from Infirmifilum uzonense. Sequence analysis showed that the full length of Iubgl3 was 2 106 bp, encoding 702 amino acids, with a theoretical molecular weight of 77.0 kDa. The gene was cloned and expressed in E. coli and the enzymatic properties of purified IuBgl3 were studied. The results showed that the optimal pH and temperature for pNPG hydrolysis were 5.0 and 85 ℃, respectively. The enzyme has good thermal stability, and more than 85% of enzyme activity can be retained after being treated at 80 ℃ for2 h. This enzyme has good pH stability and more than 85% of its activity can be retained after being treated at pH 4.0-11.0 for 1 h. It was found that the enzyme had high hydrolysis ability to p-nitrophenyl β-d-glucoside (pNPG) and p-nitrophenyl β-d-xylopyranoside (pNPX). When pNPG was used as the substrate, the kinetic parameters Km and Vmax were 0.38 mmol and 248.55 μmol/(mg·min), respectively, and the catalytic efficiency kcat/Km was 6 149.20 s-1mmol-1. Most metal ions had no significant effect on the enzyme activity of IuBgl3. SDS completely inactivated the enzyme, while EDTA increased the enzyme activity by 30%. This study expanded the β-glucosidase gene diversity of the thermophilic archaea GH3 family and obtained a thermostable acid bifunctional enzyme with good industrial application potential.


Assuntos
beta-Glucosidase/química , Archaea/metabolismo , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Temperatura , Glucosídeos , Estabilidade Enzimática , Especificidade por Substrato , Cinética
3.
Chinese Journal of Biotechnology ; (12): 580-592, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878583

RESUMO

A novel β-glucosidase BglD2 with glucose and ethanol tolerant properties was screened and cloned from the deep-sea bacterium Bacillus sp. D1. The application potential of BglD2 toward polydatin-hydrolyzing was also evaluated. BglD2 exhibited the maximal β-glucosidase activity at 45 °C and pH 6.5. BglD2 maintained approximately 50% of its origin activity after incubation at 30 °C and pH 6.5 for 20 h. BglD2 could hydrolyze a variety of substrates containing β (1→3), β (1→4), and β (1→6) bonds. The activity of β-glucosidase was enhanced to 2.0 fold and 2.3 fold by 100 mmol/L glucose and 150 mmol/L xylose, respectively. BglD2 possessed ethanol-stimulated and -tolerant properties. At 30 °C, the activity of BglD2 enhanced to 1.2 fold in the presence of 10% ethanol and even remained 60% in 25% ethanol. BglD2 could hydrolyze polydatin to produce resveratrol. At 35 °C, BglD2 hydrolyzed 86% polydatin after incubation for 2 h. Thus, BglD2 possessed glucose and ethanol tolerant properties and can be used as the potential candidate of catalyst for the production of resveratrol from polydatin.


Assuntos
Estabilidade Enzimática , Glucose , Glucosídeos/farmacologia , Concentração de Íons de Hidrogênio , Estilbenos/farmacologia , Especificidade por Substrato , Temperatura , Xilose , beta-Glucosidase/genética
4.
Rev. argent. microbiol ; 51(3): 201-207, set. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1041825

RESUMO

The consumption of soybean isoflavones (IS) is associated with several beneficial properties on human health. Some lactic acid bacteria possess ß-glucosidase enzyme, that allows to obtain the active form of IS (aglycone). The solid state fermentation (SSF) has received great attention in the last years in order to obtain several valuable compounds. SSF, using soybean as substrate and Lactobacillus rhamnosus CRL 981 as starter, was studied in the present work. Sucrose was added into soybean paste to study the effect on the behavior of the selected strain. The development of L. rhamnosus CRL 981 through pH and recount measures, sugar intake, organic acid production, ß-glucosidase activity and IS conversion were analyzed. No significant differences in growth and acidity were observed between soybean pastes with and without sucrose added, but the production of lactic acid was higher in the latter paste. The ß-glucosidase activity was detected in both pastes and the complete hydrolysis of IS at 12 h of fermentation was observed. Also, this strain was able to increase the free amino acids in soybean paste. SSF, using soybean as substrate and L. rhamnosus CRL 981 as starter culture, is an alternative process to obtain a soybean product bio-enriched in active IS with attractive nutritional characteristics.


El consumo de isoflavonas de soja (IS) está asociado a diversos beneficios para la salud humana. Ciertas bacterias lácticas poseen la enzima ß-glucosidasa, que permite obtener la forma bioactiva (agliconas) de las IS. La fermentación en sustrato sólido (FSS) ha recibido gran atención en los últimos anos debido a sus numerosas ventajas, y permite la obtención de productos con valor agregado. En el presente trabajo se estudió la FSS utilizando soja como sustrato y Lactobacillus rhamnosus CRL981 como cultivo iniciador. Con el fin de estudiar el efecto de una fuente de carbono externa sobre el comportamiento de la cepa seleccionada, se adicionó sacarosa a la pasta de soja. Se evaluó el crecimiento de L. rhamnosus CRL 981 a través de medidas de pH y recuento en placa. Además, se analizó el consumo de azúcares, producción de ácidos orgánicos, actividad ß-glucosidasa y conversión de IS. No se observaron diferencias significativas en el crecimiento y acidez entre las pastas de soja sin adición de sacarosa y con ella, sin embargo, la producción de ácido láctico fue mayor en esta última. La actividad de ß-glucosidasa se detectó en ambas pastas y se observó la hidrólisis completa de IS a las 12 h de fermentación. Además, esta cepa fue capaz de aumentar los aminoácidos libres en la pasta de soja. La FSS, utilizando soja como sustrato y L. rhamnosus CRL 981 como cultivo iniciador, es un proceso alternativo para obtener un producto de soja bioenriquecido en IS bioactivas con características nutricionales atractivas.


Assuntos
Glycine max/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Fermentação , Produtos Vegetais/análise , Isoflavonas/biossíntese , Sacarose/farmacologia , Proteínas de Bactérias/metabolismo , beta-Glucosidase/metabolismo , Ácido Láctico/biossíntese , Microbiologia de Alimentos , Aminoácidos/metabolismo , Hidrólise
5.
Chinese Journal of Biotechnology ; (12): 244-253, 2019.
Artigo em Chinês | WPRIM | ID: wpr-771382

RESUMO

Natural lignocellulosic materials contain cellulose, hemicellulose, and lignin. Cellulose hydrolysis to glucose requires a series of lignocellulases. Recently, the research on the synergistic effect of lignocellulases has become a new research focus. Here, four lignocellulase genes encoding β-glucosidase, endo-1,4-β-glucanase, xylanase and laccase from termite and their endosymbionts were cloned into pETDuet-1 and pRSFDuet-1 and expressed in Escherichia coli. After SDS-PAGE analysis, the corresponding protein bands consistent with the theoretical values were observed and all the proteins showed enzyme activities. We used phosphoric acid swollen cellulose (PASC) as substrate to measure the synergistic effect of crude extracts of co-expressing enzymes and the mixture of single enzyme. The co-expressed enzymes increased the degradation efficiency of PASC by 44% compared with the single enzyme mixture; while the degradation rate increased by 34% and 20%, respectively when using filter paper and corn cob pretreated with phosphoric acid as substrates. The degradation efficiency of the co-expressed enzymes was higher than the total efficiency of the single enzyme mixture.


Assuntos
Animais , Celulase , Celulose , Hidrólise , Isópteros , Lignina , Simbiose , beta-Glucosidase
6.
Rev. biol. trop ; 66(3): 1034-1045, jul.-sep. 2018. tab, graf
Artigo em Inglês | LILACS, SaludCR | ID: biblio-977364

RESUMO

Abstract The cellulolytic activity of fungi growing in the subtropical rainforest of Misiones (Argentina) represents a challenge in the technological development of the production of cellulosic bioethanol in the region using native sources. These fungi are promising to obtain sustainable enzyme cocktails using their enzymes. Cellulolytic ability of 22 white-rot fungi isolated from the subtropical rainforest of Misiones-Argentina in agar medium with two types of cellulosic substrates, carboxy-methylcellulose or crystalline cellulose, were comparatively analyzed, and the activity of two cellulolytic enzymes was evaluated in liquid medium. Although all isolates were able to grow and degrade both substrates in agar medium, and to produce total cellulase Filter paper (FPase) and endo-β-1,4-glucanase (EG) activities in broth, the isolate Irpex sp. LBM 034 showed the greatest enzymatic levels (FPase, 65.45 U L-1; EG, 221.21 U L-1). Therefore, the ITS sequence of this fungus was sequenced and analyzed through a phylogenetic analysis. These results indicate that the isolate LBM 034, corresponding to Irpex lacteus, has a promising cellulolytic ability and enzymes such as EG useful in sustainable saccharification of cellulosic materials in the region. Rev. Biol. Trop. 66(3): 1034-1045. Epub 2018 September 01.


Resumen La actividad celulolítica de hongos autóctonos asociados a la selva subtropical de Misiones (Argentina) representa un desafío en el desarrollo tecnológico de la producción de bioetanol celulósico en la región, mediante el uso de recursos nativos. Los sistemas enzimáticos de estos hongos tienen potencial aplicación en la obtención de cocteles enzimáticos rentables. La habilidad celulolítica de 22 hongos causantes de pudrición blanca se analizó comparativamente, que fueron aislados de la selva subtropical de Misiones-Argentina, en cultivos agarizados con dos tipos de sustratos celulósicos, carboxi-metilcelulosa o celulosa cristalina. También se evaluó la actividad de dos enzimas celulolíticas en cultivos líquidos. Aunque todos los aislamientos fueron capaces de crecer y degradar ambos sustratos en medio agarizado y revelar actividad celulolítica total y endo-β-1,4-glucanasa en cultivo líquido, el aislamiento Irpex sp. LBM 034 mostró las mayores actividades en papel de filtro con 65.45 U L-1 y endo-β-1,4-glucanasa con 221.21 U L-1, respectivamente. Por tanto, se secuenció y analizó la secuencia ITS de este hongo a través de un análisis filogenético. Estos resultados indicaron que el aislamiento LBM 034, correspondiente a Irpex lacteus, tiene una habilidad celulolítica prometedora en la producción de enzimas con actividad endo-β-1,4-glucanasa, útil en la sacarificación sustentable de materiales celulósicos de la región.


Assuntos
Basidiomycota , Polyporales , Fungos , Argentina , beta-Glucosidase , Celulossomas
7.
Electron. j. biotechnol ; 31: 84-92, Jan. 2018. graf, tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1022139

RESUMO

Background: Cellulolytic enzymes of microbial origin have great industrial importance because of their wide application in various industrial sectors. Fungi are considered the most efficient producers of these enzymes. Bioprospecting survey to identify fungal sources of biomass-hydrolyzing enzymes from a high-diversity environment is an important approach to discover interesting strains for bioprocess uses. In this study, we evaluated the production of endoglucanase (CMCase) and ß-glucosidase, enzymes from the lignocellulolytic complex, produced by a native fungus. Penicillium sp. LMI01 was isolated from decaying plant material in the Amazon region, and its performance was compared with that of the standard isolate Trichoderma reesei QM9414 under submerged fermentation conditions. Results: The effectiveness of LMI01 was similar to that of QM9414 in volumetric enzyme activity (U/mL); however, the specific enzyme activity (U/mg) of the former was higher, corresponding to 24.170 U/mg of CMCase and 1.345 U/mg of ß-glucosidase. The enzymes produced by LMI01 had the following physicochemical properties: CMCase activity was optimal at pH 4.2 and the ß-glucosidase activity was optimal at pH 6.0. Both CMCase and ß-glucosidase had an optimum temperature at 60°C and were thermostable between 50 and 60°C. The electrophoretic profile of the proteins secreted by LMI01 indicated that this isolate produced at least two enzymes with CMCase activity, with approximate molecular masses of 50 and 35 kDa, and ß-glucosidases with molecular masses between 70 and 100 kDa. Conclusions: The effectiveness and characteristics of these enzymes indicate that LMI01 can be an alternative for the hydrolysis of lignocellulosic materials and should be tested in commercial formulations.


Assuntos
Penicillium/enzimologia , Celulase/biossíntese , beta-Glucosidase/biossíntese , Oligossacarídeos , Temperatura , Trichoderma/enzimologia , Estabilidade Enzimática , Celulase/metabolismo , beta-Glucosidase/metabolismo , Ecossistema Amazônico , Biocatálise , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Lignina/metabolismo
8.
Chinese journal of integrative medicine ; (12): 237-240, 2018.
Artigo em Inglês | WPRIM | ID: wpr-691402

RESUMO

Amarogentin is an efficacious Chinese herbal medicine and a component of the bitter apricot kernel. It is commonly used as an expectorant and supplementary anti-cancer drug. β-Glucosidase is an enzyme that hydrolyzes the glycosidic bond between aryl and saccharide groups to release glucose. Upon their interaction, β-glucosidase catalyzes amarogentin to produce considerable amounts of hydrocyanic acid, which inhibits cytochrome C oxidase, the terminal enzyme in the mitochondrial respiration chain, and suspends adenosine triphosphate synthesis, resulting in cell death. Hydrocyanic acid is a cell-cycle-stage-nonspecific agent that kills cancer cells. Thus, β-glucosidase can be coupled with a tumor-specific monoclonal antibody. β-Glucosidase can combine with cancer-cell-surface antigens and specifically convert amarogentin to an active drug that acts on cancer cells and the surrounding antibodies to achieve a killing effect. β-Glucosidase is injected intravenously and recognizes cancer-cell-surface antigens with the help of an antibody. The prodrug amarogentin is infused after β-glucosidase has reached the target position. Coupling of cell membrane peptides with β-glucosidase allows the enzyme to penetrate capillary endothelial cells and clear extracellular deep solid tumors to kill the cells therein. The Chinese medicine amarogentin and β-glucosidase will become an important treatment for various tumors when an appropriate monoclonal antibody is developed.


Assuntos
Humanos , Amigdalina , Usos Terapêuticos , Anticorpos Monoclonais , Usos Terapêuticos , Antineoplásicos , Usos Terapêuticos , Peptídeos Penetradores de Células , Usos Terapêuticos , Iridoides , Usos Terapêuticos , Pró-Fármacos , Usos Terapêuticos , beta-Glucosidase , Usos Terapêuticos
9.
Electron. j. biotechnol ; 30: 83-87, nov. 2017. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1021898

RESUMO

Background: ß-Glucosidase assay is performed with purified or semipurified enzymes extracted from cell lysis. However, in screening studies, to find bacteria with ß-glucosidase activity among many tested bacteria, a fast method without cell lysis is desirable. In that objective, we report an in vivo ß-glucosidase assay as a fast method to find a ß-glucosidase producer strain. Results: The method consists in growing the strains for testing in a medium supplemented with the artificial substrate p-nitrophenyl-ß-glucopyranoside (pNPG). The presence of ß-glucosidases converts the substrate to p-nitrophenol (pNP), a molecule that can be easily measured in the supernatant spectrophotometrically at 405 nm. The assay was evaluated using two Bifidobacterium strains: Bifidobacterium longum B7254 strain that lacks ß-glucosidase activity and Bifidobacterium pseudocatenulatum B7003 strain that shows ß-glucosidase activity. The addition of sodium carbonate during pNP measurement increases the sensitivity of pNP detection and avoids the masking of absorbance by the culture medium. Furthermore, we show that pNP is a stable enzymatic product, not metabolized by bacteria, but with an inhibitory effect on cell growth. The ß-glucosidase activity was measured as units of enzyme per gram per minute per dry cell weight. This method also allowed the identification of Lactobacillus strains with higher ß-glucosidase activity among several lactobacillus species. Conclusion: This in vivo ß-glucosidase assay can be used as an enzymatic test on living cells without cell disruption. The method is simple, quantitative, and recommended, especially in studies screening for bacteria not only with ß-glucosidase activity but also with high ß-glucosidase activity.


Assuntos
Bifidobacterium/isolamento & purificação , Bifidobacterium/enzimologia , beta-Glucosidase/metabolismo , Bifidobacterium/metabolismo , Nitrofenilgalactosídeos , Ensaios Enzimáticos , Bifidobacterium longum/isolamento & purificação , Bifidobacterium longum/enzimologia , Bifidobacterium pseudocatenulatum/isolamento & purificação , Bifidobacterium pseudocatenulatum/enzimologia , Lactobacillus/isolamento & purificação , Lactobacillus/enzimologia , Lactobacillus/metabolismo , Nitrofenóis
10.
Electron. j. biotechnol ; 26: 20-26, Mar. 2017. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1009753

RESUMO

Background: Ginsenoside is the most important secondary metabolite in ginseng. Natural sources of wild ginseng have been overexploited. Although root culture can reduce the length of the growth cycle of ginseng, the number of species of ginsenosides is reduced and their contents are lower in the adventitious roots of ginseng than in the roots of ginseng cultivated in the field. Results: In this study, 147 strains of ß-glucosidase-producing microorganisms were isolated from soil. Of these, strain K35 showed excellent activity for converting major ginsenosides into rare ginsenosides, and a NCBI BLAST of its 16S rDNA gene sequence showed that it was most closely related to Penicillium sp. (HQ608083.1). Strain K35 was used to ferment the adventitious root extract, and the fermentation products were analyzed by high-performance liquid chromatography. The results showed that the content of the rare ginsenoside CK was 0.253 mg mL-1 under the optimal converting conditions of 9 d of fermentation at pH 7.0 in LL medium, which was significantly higher than that in the adventitious roots of ginseng. Conclusion: These findings may not only solve the problem of low productivity of metabolite in ginseng root culture but may also result in the development of a new valuable method of manufacturing ginsenoside CK.


Assuntos
beta-Glucosidase/metabolismo , Raízes de Plantas/metabolismo , Ginsenosídeos/metabolismo , Panax/metabolismo , Penicillium , Biotransformação , Cromatografia Líquida de Alta Pressão , Raízes de Plantas/química , Reatores Biológicos , Ginsenosídeos/isolamento & purificação , Fermentação , Panax/crescimento & desenvolvimento , Panax/química
11.
Mycobiology ; : 119-122, 2017.
Artigo em Inglês | WPRIM | ID: wpr-729304

RESUMO

Herein, nuruks derived from non-glutinous and glutinous rice inoculated with Aspergillus oryzae N159-1 (having high alpha-amylase and beta-glucosidase activities) were used to produce Korean alcoholic beverages. The resultant beverages had enhanced fruity (ethyl caproate and isoamyl alcohol) and rose (2-phenethyl acetate and phenethyl alcohol) flavors and high taste scores.


Assuntos
Humanos , Bebidas Alcoólicas , Alcoólicos , alfa-Amilases , Aspergillus oryzae , Aspergillus , beta-Glucosidase , Bebidas
12.
Braz. j. microbiol ; 46(3): 903-910, July-Sept. 2015. tab, ilus
Artigo em Inglês | LILACS | ID: lil-755814

RESUMO

Nineteen fungi and seven yeast strains were isolated from sugarcane bagasse piles from an alcohol plant located at Brazilian Cerrado and identified up to species level on the basis of the gene sequencing of 5.8S-ITS and 26S ribosomal DNA regions. Four species were identified: Kluyveromyces marxianus, Aspergillus niger, Aspergillus sydowii and Aspergillus fumigatus, and the isolates were screened for the production of key enzymes in the saccharification of lignocellulosic material. Among them, three strains were selected as good producers of hemicellulolitic enzymes: A. niger (SBCM3), A. sydowii (SBCM7) and A. fumigatus (SBC4). The best β-xylosidase producer was A. niger SBCM3 strain. This crude enzyme presented optimal activity at pH 3.5 and 55 °C (141 U/g). For β-glucosidase and xylanase the best producer was A. fumigatus SBC4 strain, whose enzymes presented maximum activity at 60 °C and pH 3.5 (54 U/g) and 4.0 (573 U/g), respectively. All these crude enzymes presented stability around pH 3.0–8.0 and up to 60 °C, which can be very useful in industrial processes that work at high temperatures and low pHs. These enzymes also exhibited moderate tolerance to ethanol and the sugars glucose and xylose. These similar characteristics among these fungal crude enzymes suggest that they can be used synergistically in cocktails in future studies of biomass conversion with potential application in several biotechnological sectors.

.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus niger/enzimologia , Celulose/metabolismo , /metabolismo , Kluyveromyces/enzimologia , Saccharum/microbiologia , Xilosidases/metabolismo , beta-Glucosidase/metabolismo , Aspergillus fumigatus/isolamento & purificação , Aspergillus fumigatus/metabolismo , Aspergillus niger/isolamento & purificação , Aspergillus niger/metabolismo , Sequência de Bases , Biomassa , Brasil , DNA Fúngico/genética , DNA Intergênico/genética , Fermentação , Kluyveromyces/isolamento & purificação , Kluyveromyces/metabolismo , Lignina/metabolismo , Tipagem Molecular , Técnicas de Tipagem Micológica , RNA Ribossômico/genética , Análise de Sequência de DNA
13.
Electron. j. biotechnol ; 18(4): 314-319, July 2015. graf, tab
Artigo em Inglês | LILACS | ID: lil-757870

RESUMO

Background β-Glucosidases catalyze the hydrolysis of cellobiose and cellodextrins, releasing glucose as the main product. This enzyme is used in the food, pharmaceutical, and biofuel industries. The aim of this work is to improve the β-glucosidase production by the fungus Lichtheimia ramosa by solid-state fermentation (SSF) using various agroindustrial residues and to evaluate the catalytic properties of this enzyme. Results A high production of β-glucosidase, about 274 U/g of dry substrate (or 27.4 U/mL), was obtained by cultivating the fungus on wheat bran with 65% of initial substrate moisture, at 96 h of incubation at 35°C. The enzymatic extract also exhibited carboxymethylcellulase (CMCase), xylanase, and β-xylosidase activities. The optimal activity of β-glucosidase was observed at pH 5.5 and 65°C and was stable over a pH range of 3.5-10.5. The enzyme maintained its activity (about 98% residual activity) after 1 h at 55°C. The enzyme was subject to reversible competitive inhibition with glucose and showed high catalytic activity in solutions containing up to 10% of ethanol. Conclusions β-Glucosidase characteristics associated with its ability to hydrolyze cellobiose, underscore the utility of this enzyme in diverse industrial processes.


Assuntos
beta-Glucosidase/metabolismo , Mucorales/enzimologia , Temperatura , Celulases , Celulases/biossíntese , Agroindústria , Biocatálise , Fermentação , Concentração de Íons de Hidrogênio , Resíduos Industriais
14.
Braz. j. microbiol ; 46(1): 23-28, 05/2015. graf
Artigo em Inglês | LILACS | ID: lil-748234

RESUMO

Aspergillus niger β-glucosidase was modified by covalent coupling to periodate activated polysaccharides (glycosylation). The conjugated enzyme to activated starch showed the highest specific activity (128.5 U/mg protein). Compared to the native enzyme, the conjugated form exhibited: a higher optimal reaction temperature, a lower Ea (activation energy), a higher Km (Michaelis constant) and Vmax (maximal reaction rate), and improved thermal stability. The calculated t1/2 (half-life) values of heat in-activation at 60 °C and 70 °C were 245.7 and 54.5 min respectively, whereas at these temperatures the native enzyme was less stable (t1/2 of 200.0 and 49.5 min respectively). The conjugated enzyme retained 32.3 and 29.7%, respectively from its initial activity in presence of 5 mM Sodium Dodecyl Sulphate (SDS) and p-Chloro Mercuri Benzoate (p-CMB), while the native enzyme showed a remarkable loss of activity (retained activity 1.61 and 13.7%, respectively). The present work has established the potential of glycosylation to enhance the catalytic properties of β-glucosidase enzyme, making this enzyme potentially feasible for biotechnological applications.


Assuntos
Aspergillus niger/enzimologia , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Estabilidade Enzimática , Inibidores Enzimáticos/metabolismo , Glicosilação , Cinética , Temperatura
15.
Mycobiology ; : 57-62, 2015.
Artigo em Inglês | WPRIM | ID: wpr-729860

RESUMO

beta-Glucosidase, which hydrolyzes cellobiose into two glucoses, plays an important role in the process of saccharification of the lignocellulosic biomass. In this study, we optimized the activity of beta-glucosidase of brown-rot fungus Fomitopsis pinicola KCTC 6208 using the response surface methodology (RSM) with various concentrations of glucose, yeast extract and ascorbic acid, which are the most significant nutrients for activity of beta-glucosidase. The highest activity of beta-glucosidase was achieved 3.02% of glucose, 4.35% of yeast extract, and 7.41% ascorbic acid where ascorbic acid was most effective. The maximum activity of beta-glucosidase predicted by the RSM was 15.34 U/mg, which was similar to the experimental value 14.90 U/mg at the 16th day of incubation. This optimized activity of beta-glucosidase was 23.6 times higher than the preliminary activity value, 0.63 U/mg, and was also much higher than previous values reported in other fungi strains. Therefore, a simplified medium supplemented with a cheap vitamin source, such as ascorbic acid, could be a cost effective mean of increasing beta-glucosidase activity.


Assuntos
Ácido Ascórbico , beta-Glucosidase , Biomassa , Celobiose , Coriolaceae , Fungos , Glucose , Vitaminas , Leveduras
16.
Acta Pharmaceutica Sinica ; (12): 1652-1659, 2015.
Artigo em Chinês | WPRIM | ID: wpr-320028

RESUMO

This study was performed to prepare immobilized β-glucosidase and snailase, then optimize and compare the process conditions for conversion of icariin. Immobilized β-glucosidase and snailase were prepared using crosslink-embedding method. The best conditions of the preparation process were optimized by single factor analysis and the properties of immobilized β-glucosidase and snailase were investigated. The reaction conditions including temperature, pH, substrate ratio, substrate concentration, reaction time and reusing times of the conversion of icariin using immobilized β-glucosidase or snailase were optimized. Immobilized β-glucosidase and snailase exhibited better heat stabilities and could remain about 60% activity after storage at 4 degrees C for 4 weeks. The optimized conditions for the conversion of icariin were as follows, the temperature of 50 degrees C, pH of 5.0, enzyme and substrate ratio of 1 : 1, substrate concentration of 0.1 mg x mL(-1), reaction time of 6 h for β-glucosidase and 2 h for snailase, respectively. In 5 experiments, the average conversion ratio of immobilized β-glucosidase and snailase was 70.76% and 74.97%. The results suggest an effect of promoted stabilities, prolonged lifetimes in both β-glucosidase and snailase after immobilization. The immobilized β-glucosidase and snailase exhibited a higher conversion rate and reusability compared to the free β-glucosidase and snailase. Moreover, the conversion rate of immobilized snailase was higher than that of immobilized β-glucosidase. The process of icariin conversion using immobilized β-glucosidase and snailase was moderate and feasible, which suggests that immobilized enzymes may hold a promise for industrial usage.


Assuntos
Enzimas Imobilizadas , Química , Flavonoides , Química , Hidrólise , Temperatura , beta-Glucosidase , Química
17.
China Journal of Chinese Materia Medica ; (24): 4616-4622, 2015.
Artigo em Chinês | WPRIM | ID: wpr-250444

RESUMO

The reaction conditions of baicalin hydrolyzed into baicalein by a kind of thermophilic and sugar-tolerant beta-glucosidase were studied in this paper. The beta-glucosidase could catalyze baicalin into baicalein well in the acetic acid-sodium acetate buffer. The optimal enzyme activity was at 85 degrees C and pH 5.5. The enzyme was stable at the temperature less than 85 degrees C and pH range of 5-7.5. The maximum reaction rate V. and michaelis constant K. were 0.41 mmol x L(-1) x min(-1) and 3.31 mmol x L(-1) respectively. Different metal ions had different effects on the activity of enzyme. Na+ existing in acetic acid-sodium acetate buffer had an activation effect on enzyme. The enzyme activity was enhanced by the concentrations of glucose below 0.6 mol x L(-1), and was gradually inhibited when monosaccharide concentration was over 0.6 mol x L(-1). When the monosaccharide concentration reached 1.2 mol x L(-1), the inhibition rate of enzyme activity was about 50%, which showed good glucose tolerance. The good reaction conditions through the experiment have been determined as follows, the substrate: enzyme dose was 1 g: 0.2 mL, acetic acid-sodium acetate buffer pH 5.5, reaction temperature 85 degrees C, reaction time 10 h, and the enzymatic hydrolyzation ratio could reach 97%.


Assuntos
Biocatálise , Estabilidade Enzimática , Flavanonas , Química , Flavonoides , Química , Glucose , Química , Temperatura Alta , Hidrólise , Cinética , beta-Glucosidase , Química
18.
Braz. j. microbiol ; 45(4): 1139-1144, Oct.-Dec. 2014. ilus
Artigo em Inglês | LILACS | ID: lil-741263

RESUMO

Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside) operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s) apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP) phenotype to Bgl+ cells and exerts its regulation on at least twelve downstream target genes.


Assuntos
Escherichia coli/enzimologia , Escherichia coli/genética , Regulação da Expressão Gênica , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Arbutina/metabolismo , Álcoois Benzílicos/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Glucosídeos/metabolismo , Óperon
19.
Rev. bras. hematol. hemoter ; 36(5): 345-350, Sep-Oct/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-725681

RESUMO

Objective: To evaluate the impact of enzyme replacement therapy for Gaucher Disease on clinical and laboratory parameters after two, five and ten years of treatment. Methods: Data were collected from patient records and analyzed using BioEstat software (version 5.0). Student's t-test, Analysis of Variance (ANOVA), Wilcoxon test and Kruskal–Wallis test were used for statistical analysis. Hepatomegaly and splenomegaly were analyzed using the Kappa test. Results: There was a significant increase in hemoglobin levels (p-value <0.01) and platelet counts (p-value = 0.01) within two years of therapy. At the same time, the frequencies of splenomegaly (p-value <0.01) and hepatomegaly (p-value <0.05) reduced. These results were similar at five and ten years of enzyme replacement therapy. Conclusions: There are substantial and quick (within two years) laboratory and clinical responses to enzyme replacement therapy. These improvements continue as long as enzyme replacement therapy is administered every two weeks, as recommended by the literature...


Assuntos
Humanos , Anemia , Doença de Gaucher/diagnóstico , Doença de Gaucher/terapia , Terapia de Reposição de Enzimas , Esplenomegalia , beta-Glucosidase , Sistema Fagocitário Mononuclear
20.
Mycobiology ; : 256-261, 2014.
Artigo em Inglês | WPRIM | ID: wpr-729879

RESUMO

A beta-glucosidase producing yeast strain was isolated from Korean traditional rice wine. Based on the sequence of the YCL008c gene and analysis of the fatty acid composition, the isolate was identified as Saccharomyces cerevisiae strain HJ-014. S. cerevisiae HJ-014 produced ginsenoside Rd, F2, and compound K from the ethanol extract of red ginseng. The production was increased by shaking culture, where the bioconversion efficiency was increased 2-fold compared to standing culture. The production of ginsenoside F2 and compound K was time-dependent and thought to proceed by the transformation pathway of: red ginseng extract-->Rd-->F2-->compound K. The optimum incubation time and concentration of red ginseng extract for the production of compound K was 96 hr and 4.5% (w/v), respectively.


Assuntos
beta-Glucosidase , Etanol , Panax , Saccharomyces cerevisiae , Vinho , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA